原文地址:http://blog.csdn.net/yangwenbo214/article/details/54142786

一、基本情况

前言:term query和match query牵扯的东西比较多,例如分词器、mapping、倒排索引等。我结合官方文档中的一个实例,谈谈自己对此处的理解

  • string类型在es5.*分为text和keyword。text是要被分词的,整个字符串根据一定规则分解成一个个小写的term,keyword类似es2.3中not_analyzed的情况。

    string数据put到elasticsearch中,默认是text。 NOTE:默认分词器为standard analyzer。”Quick Brown Fox!”会被分解成[quick,brown,fox]写入倒排索引

  • term query会去倒排索引中寻找确切的term,它并不知道分词器的存在。这种查询适合keyword 、numeric、date
  • match query知道分词器的存在。并且理解是如何被分词的

总的来说有如下:

  • term query 查询的是倒排索引中确切的term
  • match query 会对filed进行分词操作,然后在查询

二、测试(1)

  • 准备数据:
    POST /termtest/termtype/1
    {
    "content":"Name"
    }
    
    POST /termtest/termtype/2
    {
    "content":"name city"
    }
    
  • 查看数据是否导入
    GET /termtest/_search
    {
    "query":
    {
      "match_all": {}
    }
    }
    
  • 结果:
    {
    "took": 1,
    "timed_out": false,
    "_shards": {
      "total": 5,
      "successful": 5,
      "failed": 0
    },
    "hits": {
      "total": 2,
      "max_score": 1,
      "hits": [
        {
          "_index": "termtest",
          "_type": "termtype",
          "_id": "2",
          "_score": 1,
          "_source": {
            "content": "name city"
          }
        },
        {
          "_index": "termtest",
          "_type": "termtype",
          "_id": "1",
          "_score": 1,
          "_source": {
            "content": "Name"
          }
        }
      ]
    }
    }
    

如上说明,数据已经被导入。该处字符串类型是text,也就是默认被分词了

  • 做如下查询:
    POST /termtest/_search
    {
    "query":{
      "term":{
        "content":"Name"
      }
    }
    }
    
  • 结果
    {
    "took": 1,
    "timed_out": false,
    "_shards": {
      "total": 5,
      "successful": 5,
      "failed": 0
    },
    "hits": {
      "total": 0,
      "max_score": null,
      "hits": []
    }
    }
    

分析结果:因为是默认被standard analyzer分词器分词,大写字母全部转为了小写字母,并存入了倒排索引以供搜索。term是确切查询,必须要匹配到大写的Name。所以返回结果为空

POST /termtest/_search
{
  "query":{
    "match":{
      "content":"Name"
    }
  }
}
  • 结果
    {
    "took": 2,
    "timed_out": false,
    "_shards": {
      "total": 5,
      "successful": 5,
      "failed": 0
    },
    "hits": {
      "total": 2,
      "max_score": 0.2876821,
      "hits": [
        {
          "_index": "termtest",
          "_type": "termtype",
          "_id": "1",
          "_score": 0.2876821,
          "_source": {
            "content": "Name"
          }
        },
        {
          "_index": "termtest",
          "_type": "termtype",
          "_id": "2",
          "_score": 0.25811607,
          "_source": {
            "content": "name city"
          }
        }
      ]
    }
    }
    
分析结果: 原因(1):默认被standard analyzer分词器分词,大写字母全部转为了小写字母,并存入了倒排索引以供搜索, 
原因(2):match query先对filed进行分词,分词为”name”,再去匹配倒排索引中的term

三、测试(2)

下面是官网实例官网实例

  • 导入数据
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "full_text": {
          "type":  "text" 
        },
        "exact_value": {
          "type":  "keyword" 
        }
      }
    }
  }
}
PUT my_index/my_type/1
{
  "full_text":   "Quick Foxes!", 
  "exact_value": "Quick Foxes!"  
}

先指定类型,再导入数据

  • full_text: 指定类型为text,是会被分词
  • exact_value: 指定类型为keyword,不会被分词
  • full_text: 会被standard analyzer分词为如下terms [quick,foxes],存入倒排索引
  • exact_value: 只有[Quick Foxes!]这一个term会被存入倒排索引

  • 做如下查询
    GET my_index/my_type/_search
    {
    "query": {
      "term": {
        "exact_value": "Quick Foxes!" 
      }
    }
    }
    
  • 结果:
    {
    "took": 1,
    "timed_out": false,
    "_shards": {
      "total": 5,
      "successful": 5,
      "failed": 0
    },
    "hits": {
      "total": 1,
      "max_score": 0.2876821,
      "hits": [
        {
          "_index": "my_index",
          "_type": "my_type",
          "_id": "1",
          "_score": 0.2876821,
          "_source": {
            "full_text": "Quick Foxes!",
            "exact_value": "Quick Foxes!"
          }
        }
      ]
    }
    }
    

exact_value包含了确切的Quick Foxes!,因此被查询到

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "full_text": "Quick Foxes!" 
    }
  }
}
  • 结果:
{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
  }
}

full_text被分词了,倒排索引中只有quick和foxes。没有Quick Foxes!

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "full_text": "foxes" 
    }
  }
}
  • 结果:
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.25811607,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.25811607,
        "_source": {
          "full_text": "Quick Foxes!",
          "exact_value": "Quick Foxes!"
        }
      }
    ]
  }
}

full_text被分词,倒排索引中只有quick和foxes,因此查询foxes能成功

GET my_index/my_type/_search
{
  "query": {
    "match": {
      "full_text": "Quick Foxes!" 
    }
  }
}
  • 结果:
{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.51623213,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.51623213,
        "_source": {
          "full_text": "Quick Foxes!",
          "exact_value": "Quick Foxes!"
        }
      }
    ]
  }
}

match query会先对自己的query string进行分词。也就是”Quick Foxes!”先分词为quick和foxes。然后在去倒排索引中查询,此处full_text是text类型,被分词为quick和foxes 因此能匹配上。